DTrace Boot Camp

DTrace Boot Camp
(Drop And Give Me 20)

@oun

DISCLAIMER

This is very much a work in progress — you'll notice
that there are many places awaiting more
information. I've made it publicly available because |
think that even in its raw state it will be useful to
people learning DTrace. | welcome any and all
feedback. Thanks to the Sun folks in Prague and the
UK who have already helped to improve this
presentation. Enjoy!

-- Adam

@oun

What Is DTrace?

« DTrace is the dynamic tracing facility in Solaris 10

- Unique in its focus on production systems and its
integration of user-level and kernel-level tracing

» Has 30,000+ probes on a system by default

- Allows for tracing of arbitrary data and arbitrary
expressions using the D language

« Similar to C or awk

What Is This Talk?

» How to use DTrace
- How to use the D language
- Probes, arguments, variables, and actions

» The basics to start using DTrace for the kernel,
user-land or Java

- Many examples, exercises, and challenges to get
you using DTrace on your own

« Ask questions!

R, 5./
Preliminary Steps

» et a Solaris 10 machine
« Become the root user

- Make a new directory — use it to save all the
examples from this talk

« Might want to record your command-line history for
future reference

R, < S/
Introduction to DTrace

» Listing probes

- Enabling probes

« Built-in variables

» The trace(), and printf() actions

Listing Probes

» Use dtrace -l to list all probes
- Can mix -l with -n to list probes matching a pattern

« Specify probes by a four-tuple:
provider.module:function:name

 Any component can be blank
- Exercise: list some probes
- Exercise: combine -l and -n

- Exercise: try using wildcards for the various
components of the probe tuple

N, 5.

Enabling Probes
* Tryit:
dtrace -n syscall:::entry
- Traces every system call on the system
- Exercise: trace a single system call entry

@oun

The trace() Action and Variables

- Use the trace() action to trace any datum
> e.g. results of computation, variables, etc.

« Try tracing a value:
dtrace -n 'syscall:::entry{ trace(10); }
- Exercise: trace a variable
> execname — currently running executable
> timestamp — nanosecond timestamp
> walltimestamp — seconds since the Unix epoch
> pid, uid, gid, etc. — what you'd expect

Predicates

» Predicates are arbitrary D expressions that
determine if a clause is executed

- Specify a predicate like this:
[arbitrary-expression/

- Try limiting tracing to a particular executable
dtrace -n 'syscall:::entry/execname == “Xorg/{}

- Exercise: mix predicates and the trace() action

More Variables

- Each part of a probe has an associated variable
> probeprov — provider name
> probemod — module containing the probe (if any)
> probefunc — function containing the probe
> probename — name of probe

- Probes can have arguments (arg0, arg1, etc.)
> Different for each provider and each probe

- syscall entry probe arguments are the parameters
passed to the system call

- Exercise: try tracing system call arguments

@oun

The printf() Action

« Modeled after printf(3C) — behaves as you'd expect

- Small difference: 'I's not needed to specify argument
width — but you can use them

- Exercise: use printf to trace the pid and execname
« Done? Try your favorite printf() formats

N, 5./
Fun With walltimestamp

« The printf() action has some additional format
characters (some borrowed from mdb(1))

» %Y can be used to format a date

o Tryit;
dtrace -n 'BEGIN{ printf("*%Y", walltimestamp); }'

D-Scripts

« Can do everything from the command-line
- Big DTrace enabling can become confusing

« Put them in an executable script:
#!/usr/sbin/dtrace -s

syscall:::entry

{

trace(execname);
}

- Exercise: try it — make it executable

@oun

Aggregations

- Often the individual data points are overwhelming
- Aggregations provide a way of accumulating data
- Data stored efficiently on MP systems

- Several aggregating functions

- Aggregations can be keyed by an arbitrary tuple of
D expressions

- By default, the contents of aggregations are printed
when the consumer completes

> e.g. when you hit AC

@oun

Simple Aggregation With count()

- Aggregations are specified like this:
@namelarbitrary-tuple] = action(arguments)

- The name and tuple may be omitted
« The arguments depend on the aggregating action
o Tryit;

dtrace -n 'syscall:::entry{ @ = count(); }'
- Exercise: try specifying a name for the aggregation
- Exercise: try adding tuple keys (comma separated)

- Exercise: produce a count for each system call

N, 5./
The quantize() Aggregating Action
- The quantize() action is particularly useful for
performance work
- Takes a single numeric argument

» Produces a histogram in power of two buckets

o Tryit;
dtrace -n 'syscall::write:entry{ @ = quantize(arg2); }

R, 5./
Multiple Aggregations

- Enablings can have multiple aggregations:
syscall::write:entry

@Dbiggest = max(arg2);
@average = avg(arg2);
@smallest = min(arg2);

}

- Can you guess what min(), max(), and avg() do?
* Try it

Thread-Local Variables

- Several different types of variables
> global, thread-local, probe-local
> already seen built-in variables

» Thread-locals are the most common

- Specify a thread-local variable like this:
self->name

« Usually no need to declare them — DTrace will
create them on the fly and infer the type (if it can)

- Value starts as 0 — assigning 0 frees them

Using Thread-Local Variables

« Try this script (save the output — we'll need it):

syscall::ioctl:entry

self->follow = 1;

}

fbt:::
[self->follow/

{

syscall::ioctl:return
[self->follow/

self->follow = 0;
} exit(0);

@oun

Aside: Pragmas

 DTrace has pragmas to allow you to tune certain
options

« To the previous script, try adding the following:

#pragma D option flowindent

« Note that you can do the same thing with the -F
option to dtrace(1M)

@oun

Using Thread-Locals For Timing

- Exercise: using a thread-local variable and the
timestamp variable, aggregate on the time taken
for each system call

- Exercise: keying the aggregation by the name of the
system call, quantize on the time taken

@oun

Aside: The stack() Action

« Run that follow script again and pick a kernel
function

« Try enabling it (in a new script)
fot::function-name:entry

- Now use the stack() action:
fot::copyin:entry{ stack(); }

« You can also use stack() as a key for an
aggregation

» Exercise: try it

N <1
Problem With The stack() Action

 Trace the entire kernel stack trace
» Can't access the individual elements

- Would be nice to look at part of the stack in a
predicate

« Can produce similar effects with thread-locals

@oun

Ready-Set-Go

» Pick a call chain from a stack trace
> e.g. a() calls b() calls c()

- Exercise: write a script that only traces a stack trace
with a given call chain:

fot::a:entry{ self->state = 1; }
fot::b:entry/self->state == 1/{ self->state = 2; }
fot:.c.entry/self->state == 2/{ stack(); }'
fot::b:return/self->state == 2/{ self->state = 1;}
fot::a:return/self->state == 1/{ self->state = 0; }

@oun

Aside: The BEGIN and END probes

« The dtrace:::BEGIN probe fires when tracing starts

- The dtrace:::END probe fires when tracing is done
> Either because of a *C or the exit() action

« Often abbreviated as BEGIN and END
- Exercise: use the printf() action from BEGIN

- Exercise: use the exit() action in BEGIN and the
printf() action in END

- BEGIN is a good place to do some initialization
- END is a good place to do clean up and printing

@oun

Associative Arrays

- Associative arrays are like maps or hashtables

» A global associative array looks like this:
namelarbitrary-tuple]

« Associative arrays can also be thread-local.
self->namelarbitrary-tuple]

- Can be used like any other variable

» Like all variables, uninitialized variables start out
with a value of 0 (or NULL if you prefer)

@oun

Setting Up Associative Arrays

- Set up an associative array in the BEGIN probe:

BEGIN

{
fdname[0] = “stdin”;
fdname[1] = “stdout”;
fdname[2] = “stderr”;

}

« Try using it to print out the file descriptor argument
to syscall::write:entry (arg0)

- Challenge: use the ?: operator to trace the string
“other” if associative array entry isn't set

Recording Data in Associative Arrays

» You can use associative arrays to hold whatever

data you like
* Try this:
syscall:::entry

printf(*%s has been called %d times”,
} probefunc, ++times[probefuncl);

- WARNING: This is a bad use of associative arrays,
but it's worth playing with

Associative Array Challenge

- Exercise: modify that “follow” script from before to
record the time spent in each function (don't worry
about recursion)

- Hint: use a thread-local associative array

- Exercise (harder): try writing the above script to
gracefully handle recursive calls

Associative Arrays v. Aggregations

- Aggregations use per-CPU buffers to ensure a
scalable implementation

« Only one instance of each associative array
element

« Multiple CPUs can race to read and modify values
In an associative array

« No way to output the entire contents of an
associative array

« Conclusion: use aggregations for recording data for
output and associative arrays like a hashtable

N, 5./
User-Level Tracing

* The pid provider

» Probes and probe arguments

« The ustack() action

» Tracing processes with -c and -p

« The copyin() and copyinstr() actions
« Qur first destructive action: copyout()

The pid Provider

- The pid provider defines a class of providers
pidprocess-ID.object-name:function:name

- The probe name can be “entry” or “return” ora
hexadecimal value corresponding to an instruction
offset

« The pid provider can trace any instruction on any
process on the system!

- WARNING: You probably don't want to trace every
instruction even in a single process at once

> |t work, but it will take a loooooong time

@oun

Using the pid Provider

- Use prstat(1) or pgrep(1) to find the pid of a process
for you to play with

- Exercise: using an aggregation, count the number
of times each function is called in an application

- Exercise (harder): aggregate based on the time
spent in each function (including called functions)

 Done? Try modifying previous examples to use the
pid provider (rather than syscall or fbt)

Arguments For The pid Provider

 Arguments to the entry probe are the parameters to
the function

« For return probes:
> arg0 — the offset in the function of the given return site
> arg1 - the function's return value

» For offset probes, the arguments are undefined

- Exercise: Use the pid<pid>::malloc:entry probe to
quantize on the size of allocations

- Exercise (hard): Aggregate on the time between
malloc(3C) and free(3C) for a given allocation

The ustack() Action

» Records a user-level stack trace
> Analogous to the stack() action for the kernel

- Can be used from any probe - kernel or user-level
- Data recording action or key for aggregation

» Exercise: pick a pid provider probe and use the
ustack() action both by itself and as a key for an
aggregation

Tracing Processes with -c and -p

@oun

The copyin() Action

» DTrace actions are executed in the kernel

- To access user-land data, need to use the copyin()
or copyinstr() actions — return pointers to data

copyin(address, size)
copyinstr(address)

« copyinstr() looks for a terminating NULL byte

Using the copyin() Action

« Reminder:
copyin(address, size)
copyinstr(address)

- Exercise: use copyinstr() to examine the files being
opened with the open(2) system call

> (Gotcha: applications may use open64(2)
- Exercise (hard): use copyin() to print the values
returned by the uname(2) system call

> Hint: use a thread-local to remember the input address
> Hint: cast value returned by copyin() to struct utsname *

uname(2) Solution

syscall::uname:entry

self->addr = arg0;

}

syscall::uname:return
éself—>addr/
self->p = (struct utsname *)copyin(self->addr, sizeof (struct utsname));
printf("%s %s %s %s %s",
self->p->sysname,
self->p->nodename,
self->p->release,
self->p->version,
self->p->machine);
self->p = 0;
} self->addr = 0;

Aside: Probe-Local Variables

» Probe-local variables survive for the duration of a
given probe firing

- Specified a little like thread-locals: this->name

» Used to store temporary values or to communicate
values between successive instances of the same
probe

 No need to set variables to 0 as it was with thread-
locals — automatically deleted after a probe fires

uname(2) Solution (Improved)

syscall::uname:entry

self->addr = arg0;

}

syscall::uname:return
éself—>addr/
this->p = (struct utsname *)copyin(self->addr, sizeof (struct utsname));
printf("%s %s %s %s %s",
this->p->sysname,
this->p->nodename,
this->p->release,
this->p->version,
this->p->machine);
/* no need to zero this->p! */
self->addr = 0;

Aside: Destructive Actions

- DTrace is designed to protect the state of the
system so doesn't allow modifications...

* ... most of the time
 Destructive actions allow for destructive behavior

- Enable the use of destructive actions with with -w
option to dtrace(1M) or by adding the following to
your script:

#pragma D option destructive

- WARNING: Destructive actions are appropriately
named — you can destroy your system!

@oun

Fun With The copyout() Action

- Copies out given data to the user-land process:

copyout(address, data, size)
copyoutstr(string, address, size)

- Exercise: using a predicate, try changing one file
name to another in open(2) (be careful)

- Exercise: try changing the output of uname(1) with a
DTrace script that modifies the data returned by
uname(2)

The Profile Provider

- The profile provider has two types of probes
> profile-interval — fires on every CPU each interval
> tick-interval — fires on a CPU each interval

« Profile probes used for profiling
« Tick probes used for time-based script activities

» Intervals can have suffixes like 'hz','s', 'sec’, 'm’,
'min’
« Intervals default to hertz with no suffix

@oun

Using The Profile Provider

* Tryit:
profile:::profile-97
[execname == “Xorg"/

@][ustack()] = count();

- Exercise: use the tick provider to output a message
every second

- Challenge: use a tick probe and an associative
array to display a spinning status indicator

Advanced Aggregations

- Aggregations have some operations which can be
applled to them

« The clear() action clears all values (not the keys)
- The trunc() action clears values and keys

» The printa() action can be used to format
aggregations

The trunc() Action

« The trunc() action clears aggregation keys and
values

- Itis invoked like this:
trunc(@namel, count])

« The optional count specifies the number of entries
to keep

> Positive values keep the top count entries
> Negative values keep the bottom count entries

- Exercise: write a DTrace script to output the top 10
most often called functions (use trunc() in END)

@oun

The clear() and printa() Actions

- The clear() action takes an aggregation as its
argument and clears its values

- The printa() action takes a printf-like format string
and an aggregation and prints out each element
according to that format

- The '@’ format character is for the result of the
aggregation

o Tryit:
syscall:::entry{ @[probefunc] = count(); }
END{ printa("%s was called %@u times\n”, @); }

Using clear() and printa()

- Exercise: write a script that collects a count of the
functions called in a process and prints them out
every second (hint use a tick probe)

- Exercise: now clear the aggregation so you see the
functions called in the last second

- Challenge: record both the function and module
name, look at the default output, improve it with the
printa() action

DTrace for Java

@oun

Aside: Options and Tunables

 Many options and tunables you can specify

- Use -xoption[=value] or add this to your script:
#pragma D option option[=value]

» Buffer sizes can use suffixes like 'k' or 'M'

- Rates can use suffixes like 'hz', 's' or 'm'

Unexpected Failures

« Errors:
> lllegal operations
> Spurious failures

* Drops
> Data drops
> Aggregation drops
> Dynamic variable drops

Errors

» Errors can occur due to an illegal operation

- Errors cause the executing clause to be aborted
and no data to be traced from that clause

e Try this:
dtrace -n 'BEGIN{ *(int *)NULL; }

A common error is a copyin() “first touch”

- |f a user-land page is not in memory, copyin() will
fail with an error

@oun

Dealing With copyin() Errors

» Usually happens in a enabling like this:
syscall::open:entry{ copyinstr(arg0); }

« Trick: let the kernel perform the "first touch”, and
catch it in the return probe

« Exercise: Use a thread-local variable and record the
filename to open(2) in the return probe

Data Drops

- Data drops can occur if you're tracing data too much
data or you're tracing it too quickly

- Data is recorded to per-CPU, fixed-sized, in-kernel
buffers and the user-land consumer then takes a
snapshot of that buffer

- Data drops can be solved by...
> increasing the size of the tracing buffer (bufsize)

> increasing the rate at which the consumer takes
snapshots (switchrate)

> tracing less data

Aggregation Drops

- Aggregation drops are similar to data drops and can
be solved by

> increasing the size of the aggregation buffers (aggsize)

> Increasing the rate at which aggregations are captured
by the consumer (aggrate)

@oun

Dynamic Variable Drops

> Dynamic variable drops occur when there’s no
space to store an instantiated variable

« NOTE: Any dynamic variable drops mean your data
IS probably invalid

« Usually happen when you fail to free a variable by
setting itto 0

- Can happen with large and complex scripts
» Fix it by tuning dynvarsize higher

R, < S/
Destructive Actions

« Destructive actions change the state of the system

» They need to be used with utmost care — or else
you can trash your system

The stop() Action

- Stops the currently running process

 Destructive because it modifies the state of the
system

- Use prun(1) to restart a stopped process

- Exercise: try using stop() to stop your shell

> WARNING: If you don't use a predicate you could end up
stopping every process on your system

The raise() Action

- The raise() action sends a signal to the currently
running process

- Takes the signal number as an argument
- Destructive — of course

- Exercise: use the raise() action to kill every process
that tries to open(2) a particular file

> WARNING: If you use the wrong predicate you could kill
every process on your system

@oun

The system() Action

- Causes the consumer to spawn the given command
- Takes printf-like arguments

- Destructive because of the havoc it can wreak on
your system

* Try this:
syscall::open:entry

system(“echo opened %s”, copyinstr(arg0));

}

@oun

Combining stop() and system()

« You can use stop() followed by a call to system() to
run conventional debugging commands:

stop();
system(“prun %d”, pid);

- Exercise: add another call to system() between the
stop() and the prun to invoke the pstack(1)
command

Speculative Tracing

Anonymous Tracing

Using DTrace as Non-Root

Want More?

- This was a decent survey, but it just scratched the
surface

» o to the DTrace home page
> http://www.opensolaris.org/os/community/dtrace
> Check out the Solaris Dynamic Tracing Guide
> Look at the examples in /usr/demo/dtrace
> Join the DTrace discussion list

» You have enough to start using DTrace on your own
« Ask questions if you get stuck

Using DTrace
Q&A

