
DTrace Boot Camp

Adam Leventhal http://blogs.sun.com/ahl
Solaris Kernel Development
Sun Microsystems, Inc.

8.18.2005

DTrace Boot Camp
(Drop And Give Me 20)

Adam Leventhal http://blogs.sun.com/ahl
Solaris Kernel Development
Sun Microsystems, Inc.

DISCLAIMER

This is very much a work in progress – you'll notice
that there are many places awaiting more
information. I've made it publicly available because I
think that even in its raw state it will be useful to
people learning DTrace. I welcome any and all
feedback. Thanks to the Sun folks in Prague and the
UK who have already helped to improve this
presentation. Enjoy!

-- Adam

What Is DTrace?

• DTrace is the dynamic tracing facility in Solaris 10
• Unique in its focus on production systems and its

integration of user-level and kernel-level tracing
• Has 30,000+ probes on a system by default
• Allows for tracing of arbitrary data and arbitrary

expressions using the D language
• Similar to C or awk

What Is This Talk?

• How to use DTrace
• How to use the D language
• Probes, arguments, variables, and actions
• The basics to start using DTrace for the kernel,

user-land or Java
• Many examples, exercises, and challenges to get

you using DTrace on your own
• Ask questions!

Preliminary Steps

• Get a Solaris 10 machine
• Become the root user
• Make a new directory – use it to save all the

examples from this talk
• Might want to record your command-line history for

future reference

 Introduction to DTrace

• Listing probes
• Enabling probes
• Built-in variables
• The trace(), and printf() actions

Listing Probes

• Use dtrace -l to list all probes
• Can mix -l with -n to list probes matching a pattern
• Specify probes by a four-tuple:

provider:module:function:name
• Any component can be blank
• Exercise: list some probes
• Exercise: combine -l and -n
• Exercise: try using wildcards for the various

components of the probe tuple

Enabling Probes

• Try it:
dtrace -n syscall:::entry

• Traces every system call on the system
• Exercise: trace a single system call entry

The trace() Action and Variables

• Use the trace() action to trace any datum
> e.g. results of computation, variables, etc.

• Try tracing a value:
dtrace -n 'syscall:::entry{ trace(10); }'

• Exercise: trace a variable
> execname – currently running executable
> timestamp – nanosecond timestamp
> walltimestamp – seconds since the Unix epoch
> pid, uid, gid, etc. – what you'd expect

Predicates

• Predicates are arbitrary D expressions that
determine if a clause is executed
• Specify a predicate like this:

/arbitrary-expression/
• Try limiting tracing to a particular executable

dtrace -n 'syscall:::entry/execname == “Xorg”/{}'
• Exercise: mix predicates and the trace() action

More Variables

• Each part of a probe has an associated variable
> probeprov – provider name
> probemod – module containing the probe (if any)
> probefunc – function containing the probe
> probename – name of probe

• Probes can have arguments (arg0, arg1, etc.)
> Different for each provider and each probe

• syscall entry probe arguments are the parameters
passed to the system call
• Exercise: try tracing system call arguments

The printf() Action

• Modeled after printf(3C) – behaves as you'd expect
• Small difference: 'l's not needed to specify argument

width – but you can use them
• Exercise: use printf to trace the pid and execname
• Done? Try your favorite printf() formats

Fun With walltimestamp

• The printf() action has some additional format
characters (some borrowed from mdb(1))
• %Y can be used to format a date
• Try it:

dtrace -n 'BEGIN{ printf(“%Y”, walltimestamp); }'

D-Scripts

• Can do everything from the command-line
• Big DTrace enabling can become confusing
• Put them in an executable script:

#!/usr/sbin/dtrace -s

syscall:::entry
{

trace(execname);
}

• Exercise: try it – make it executable

Aggregations

• Often the individual data points are overwhelming
• Aggregations provide a way of accumulating data
• Data stored efficiently on MP systems
• Several aggregating functions
• Aggregations can be keyed by an arbitrary tuple of

D expressions
• By default, the contents of aggregations are printed

when the consumer completes
> e.g. when you hit ^C

Simple Aggregation With count()

• Aggregations are specified like this:
@name[arbitrary-tuple] = action(arguments)

• The name and tuple may be omitted
• The arguments depend on the aggregating action
• Try it:

dtrace -n 'syscall:::entry{ @ = count(); }'
• Exercise: try specifying a name for the aggregation
• Exercise: try adding tuple keys (comma separated)
• Exercise: produce a count for each system call

The quantize() Aggregating Action

• The quantize() action is particularly useful for
performance work
• Takes a single numeric argument
• Produces a histogram in power of two buckets
• Try it:

dtrace -n 'syscall::write:entry{ @ = quantize(arg2); }'

Multiple Aggregations

• Enablings can have multiple aggregations:
syscall::write:entry
{

@biggest = max(arg2);
@average = avg(arg2);
@smallest = min(arg2);

}
• Can you guess what min(), max(), and avg() do?
• Try it

Thread-Local Variables

• Several different types of variables
> global, thread-local, probe-local
> already seen built-in variables

• Thread-locals are the most common
• Specify a thread-local variable like this:

self->name
• Usually no need to declare them – DTrace will

create them on the fly and infer the type (if it can)
• Value starts as 0 – assigning 0 frees them

Using Thread-Local Variables

• Try this script (save the output – we'll need it):

syscall::ioctl:entry
{

self->follow = 1;
}

fbt:::
/self->follow/
{}

syscall::ioctl:return
/self->follow/
{

self->follow = 0;
exit(0);

}

Aside: Pragmas

• DTrace has pragmas to allow you to tune certain
options
• To the previous script, try adding the following:

#pragma D option flowindent

• Note that you can do the same thing with the -F
option to dtrace(1M)

Using Thread-Locals For Timing

• Exercise: using a thread-local variable and the
timestamp variable, aggregate on the time taken
for each system call
• Exercise: keying the aggregation by the name of the

system call, quantize on the time taken

Aside: The stack() Action

• Run that follow script again and pick a kernel
function
• Try enabling it (in a new script)

fbt::function-name:entry
• Now use the stack() action:

fbt::copyin:entry{ stack(); }
• You can also use stack() as a key for an

aggregation
• Exercise: try it

Problem With The stack() Action

• Trace the entire kernel stack trace
• Can't access the individual elements
• Would be nice to look at part of the stack in a

predicate
• Can produce similar effects with thread-locals

Ready-Set-Go

• Pick a call chain from a stack trace
> e.g. a() calls b() calls c()

• Exercise: write a script that only traces a stack trace
with a given call chain:

fbt::a:entry{ self->state = 1; }
fbt::b:entry/self->state == 1/{ self->state = 2; }
fbt::c:entry/self->state == 2/{ stack(); }'
fbt::b:return/self->state == 2/{ self->state = 1;}
fbt::a:return/self->state == 1/{ self->state = 0; }

Aside: The BEGIN and END probes

• The dtrace:::BEGIN probe fires when tracing starts
• The dtrace:::END probe fires when tracing is done
> Either because of a ^C or the exit() action

• Often abbreviated as BEGIN and END
• Exercise: use the printf() action from BEGIN
• Exercise: use the exit() action in BEGIN and the

printf() action in END
• BEGIN is a good place to do some initialization
• END is a good place to do clean up and printing

Associative Arrays

• Associative arrays are like maps or hashtables
• A global associative array looks like this:

name[arbitrary-tuple]
• Associative arrays can also be thread-local:

self->name[arbitrary-tuple]
• Can be used like any other variable
• Like all variables, uninitialized variables start out

with a value of 0 (or NULL if you prefer)

Setting Up Associative Arrays

• Set up an associative array in the BEGIN probe:
BEGIN
{

fdname[0] = “stdin”;
fdname[1] = “stdout”;
fdname[2] = “stderr”;

}
• Try using it to print out the file descriptor argument

to syscall::write:entry (arg0)
• Challenge: use the ?: operator to trace the string

“other” if associative array entry isn't set

Recording Data in Associative Arrays

• You can use associative arrays to hold whatever
data you like
• Try this:

syscall:::entry
{

printf(“%s has been called %d times”,
 probefunc, ++times[probefunc]);

}
• WARNING: This is a bad use of associative arrays,

but it's worth playing with

Associative Array Challenge

• Exercise: modify that “follow” script from before to
record the time spent in each function (don't worry
about recursion)
• Hint: use a thread-local associative array
• Exercise (harder): try writing the above script to

gracefully handle recursive calls

Associative Arrays v. Aggregations

• Aggregations use per-CPU buffers to ensure a
scalable implementation
• Only one instance of each associative array

element
• Multiple CPUs can race to read and modify values

in an associative array
• No way to output the entire contents of an

associative array
• Conclusion: use aggregations for recording data for

output and associative arrays like a hashtable

User-Level Tracing

• The pid provider
• Probes and probe arguments
• The ustack() action
• Tracing processes with -c and -p
• The copyin() and copyinstr() actions
• Our first destructive action: copyout()

The pid Provider

• The pid provider defines a class of providers
pidprocess-ID:object-name:function:name

• The probe name can be “entry” or “return” or a
hexadecimal value corresponding to an instruction
offset
• The pid provider can trace any instruction on any

process on the system!
• WARNING: You probably don't want to trace every

instruction even in a single process at once
> It'll work, but it will take a loooooong time

Using the pid Provider

• Use prstat(1) or pgrep(1) to find the pid of a process
for you to play with
• Exercise: using an aggregation, count the number

of times each function is called in an application
• Exercise (harder): aggregate based on the time

spent in each function (including called functions)
• Done? Try modifying previous examples to use the

pid provider (rather than syscall or fbt)

Arguments For The pid Provider

• Arguments to the entry probe are the parameters to
the function
• For return probes:
> arg0 – the offset in the function of the given return site
> arg1 – the function's return value

• For offset probes, the arguments are undefined
• Exercise: Use the pid<pid>::malloc:entry probe to

quantize on the size of allocations
• Exercise (hard): Aggregate on the time between

malloc(3C) and free(3C) for a given allocation

The ustack() Action

• Records a user-level stack trace
> Analogous to the stack() action for the kernel

• Can be used from any probe – kernel or user-level
• Data recording action or key for aggregation
• Exercise: pick a pid provider probe and use the

ustack() action both by itself and as a key for an
aggregation

Tracing Processes with -c and -p

The copyin() Action

• DTrace actions are executed in the kernel
• To access user-land data, need to use the copyin()

or copyinstr() actions – return pointers to data

copyin(address, size)
copyinstr(address)

• copyinstr() looks for a terminating NULL byte

Using the copyin() Action

• Reminder:
copyin(address, size)
copyinstr(address)

• Exercise: use copyinstr() to examine the files being
opened with the open(2) system call
> Gotcha: applications may use open64(2)

• Exercise (hard): use copyin() to print the values
returned by the uname(2) system call
> Hint: use a thread-local to remember the input address
> Hint: cast value returned by copyin() to struct utsname *

uname(2) Solution
syscall::uname:entry
{
 self->addr = arg0;
}

syscall::uname:return
/self->addr/
{
 self->p = (struct utsname *)copyin(self->addr, sizeof (struct utsname));
 printf("%s %s %s %s %s",
 self->p->sysname,
 self->p->nodename,
 self->p->release,
 self->p->version,
 self->p->machine);
 self->p = 0;
 self->addr = 0;
}

Aside: Probe-Local Variables

• Probe-local variables survive for the duration of a
given probe firing
• Specified a little like thread-locals: this->name
• Used to store temporary values or to communicate

values between successive instances of the same
probe
• No need to set variables to 0 as it was with thread-

locals – automatically deleted after a probe fires

uname(2) Solution (Improved)
syscall::uname:entry
{
 self->addr = arg0;
}

syscall::uname:return
/self->addr/
{
 this->p = (struct utsname *)copyin(self->addr, sizeof (struct utsname));
 printf("%s %s %s %s %s",
 this->p->sysname,
 this->p->nodename,
 this->p->release,
 this->p->version,
 this->p->machine);
 /* no need to zero this->p! */
 self->addr = 0;
}

Aside: Destructive Actions

• DTrace is designed to protect the state of the
system so doesn't allow modifications...
• ... most of the time
• Destructive actions allow for destructive behavior
• Enable the use of destructive actions with with -w

option to dtrace(1M) or by adding the following to
your script:

#pragma D option destructive
• WARNING: Destructive actions are appropriately

named – you can destroy your system!

Fun With The copyout() Action

• Copies out given data to the user-land process:

copyout(address, data, size)
copyoutstr(string, address, size)

• Exercise: using a predicate, try changing one file
name to another in open(2) (be careful)
• Exercise: try changing the output of uname(1) with a

DTrace script that modifies the data returned by
uname(2)

The Profile Provider

• The profile provider has two types of probes
> profile-interval – fires on every CPU each interval
> tick-interval – fires on a CPU each interval

• Profile probes used for profiling
• Tick probes used for time-based script activities
• Intervals can have suffixes like 'hz', 's', 'sec', 'm',

'min'
• Intervals default to hertz with no suffix

Using The Profile Provider

• Try it:
profile:::profile-97
/execname == “Xorg”/
{

@[ustack()] = count();
}

• Exercise: use the tick provider to output a message
every second
• Challenge: use a tick probe and an associative

array to display a spinning status indicator

Advanced Aggregations

• Aggregations have some operations which can be
applied to them
• The clear() action clears all values (not the keys)
• The trunc() action clears values and keys
• The printa() action can be used to format

aggregations

The trunc() Action

• The trunc() action clears aggregation keys and
values
• It is invoked like this:

trunc(@name[, count])
• The optional count specifies the number of entries

to keep
> Positive values keep the top count entries
> Negative values keep the bottom count entries

• Exercise: write a DTrace script to output the top 10
most often called functions (use trunc() in END)

The clear() and printa() Actions

• The clear() action takes an aggregation as its
argument and clears its values
• The printa() action takes a printf-like format string

and an aggregation and prints out each element
according to that format
• The '@' format character is for the result of the

aggregation
• Try it:

syscall:::entry{ @[probefunc] = count(); }
END{ printa(“%s was called %@u times\n”, @); }

Using clear() and printa()

• Exercise: write a script that collects a count of the
functions called in a process and prints them out
every second (hint use a tick probe)
• Exercise: now clear the aggregation so you see the

functions called in the last second
• Challenge: record both the function and module

name, look at the default output, improve it with the
printa() action

DTrace for Java

Aside: Options and Tunables

• Many options and tunables you can specify
• Use -xoption[=value] or add this to your script:

#pragma D option option[=value]
• Buffer sizes can use suffixes like 'k' or 'M'
• Rates can use suffixes like 'hz', 's' or 'm'

Unexpected Failures

• Errors:
> Illegal operations
> Spurious failures

• Drops
> Data drops
> Aggregation drops
> Dynamic variable drops

Errors

• Errors can occur due to an illegal operation
• Errors cause the executing clause to be aborted

and no data to be traced from that clause
• Try this:

dtrace -n 'BEGIN{ *(int *)NULL; }'
• A common error is a copyin() “first touch”
• If a user-land page is not in memory, copyin() will

fail with an error

Dealing With copyin() Errors

• Usually happens in a enabling like this:
syscall::open:entry{ copyinstr(arg0); }

• Trick: let the kernel perform the “first touch”, and
catch it in the return probe
• Exercise: Use a thread-local variable and record the

filename to open(2) in the return probe

Data Drops

• Data drops can occur if you're tracing data too much
data or you're tracing it too quickly
• Data is recorded to per-CPU, fixed-sized, in-kernel

buffers and the user-land consumer then takes a
snapshot of that buffer
• Data drops can be solved by...
> increasing the size of the tracing buffer (bufsize)
> increasing the rate at which the consumer takes

snapshots (switchrate)
> tracing less data

Aggregation Drops

• Aggregation drops are similar to data drops and can
be solved by
> increasing the size of the aggregation buffers (aggsize)
> increasing the rate at which aggregations are captured

by the consumer (aggrate)

Dynamic Variable Drops

• Dynamic variable drops occur when there's no
space to store an instantiated variable
• NOTE: Any dynamic variable drops mean your data

is probably invalid
• Usually happen when you fail to free a variable by

setting it to 0
• Can happen with large and complex scripts
• Fix it by tuning dynvarsize higher

Destructive Actions

• Destructive actions change the state of the system
• They need to be used with utmost care – or else

you can trash your system

The stop() Action

• Stops the currently running process
• Destructive because it modifies the state of the

system
• Use prun(1) to restart a stopped process
• Exercise: try using stop() to stop your shell
> WARNING: If you don't use a predicate you could end up

stopping every process on your system

The raise() Action

• The raise() action sends a signal to the currently
running process
• Takes the signal number as an argument
• Destructive – of course
• Exercise: use the raise() action to kill every process

that tries to open(2) a particular file
> WARNING: If you use the wrong predicate you could kill

every process on your system

The system() Action

• Causes the consumer to spawn the given command
• Takes printf-like arguments
• Destructive because of the havoc it can wreak on

your system
• Try this:

syscall::open:entry
{

system(“echo opened %s”, copyinstr(arg0));
}

Combining stop() and system()

• You can use stop() followed by a call to system() to
run conventional debugging commands:
{

stop();
system(“prun %d”, pid);

}
• Exercise: add another call to system() between the

stop() and the prun to invoke the pstack(1)
command

Speculative Tracing

Anonymous Tracing

Using DTrace as Non-Root

Want More?

• This was a decent survey, but it just scratched the
surface
• Go to the DTrace home page
> http://www.opensolaris.org/os/community/dtrace
> Check out the Solaris Dynamic Tracing Guide
> Look at the examples in /usr/demo/dtrace
> Join the DTrace discussion list

• You have enough to start using DTrace on your own
• Ask questions if you get stuck

Adam Leventhal
http://blogs.sun.com/ahl

Using DTrace

Q&A

